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Abstract
We review flows of dense cohesionless granular materials, with a
special focus on the question of constitutive equations. We first dis-
cuss the existence of a dense flow regime characterized by enduring
contacts. We then emphasize that dimensional analysis strongly con-
strains the relation between stresses and shear rates, and show that
results from experiments and simulations in different configurations
support a description in terms of a frictional visco-plastic constitutive
law. We then discuss the successes and limitations of this empirical
rheology in light of recent alternative theoretical approaches. Fi-
nally, we briefly present depth-averaged methods developed for free
surface granular flows.
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1. INTRODUCTION

Those who have played with dry sand on the beach or with sugar in their kitchen are
aware that a collection of solid grains can behave macroscopically like a liquid and
flow. However, understanding and modeling this common observation are difficult
tasks, and granular flows have been the subject of intense activity at the leading edge
of fluid mechanics, soil mechanics, rheology, and statistical physics. Research is mo-
tivated by numerous applications encountered in industrial processes and especially
in geophysics for the description and prediction of natural hazards such as landslides,
rock avalanches, and pyroclastic flows. However, the recent interest in granular flows
certainly also is stimulated by new fundamental questions raised by this peculiar fluid,
which shares similarities with other athermal disordered systems such as foam, amor-
phous solids, or emulsions (Liu & Nagel 1998) and exhibits a rich phenomenology
(Aranson & Tsimring 2006).

Among these important questions is the lack of constitutive equations. Whereas
classical fluids are well described by the Navier-Stokes equations, no constitutive law
can reproduce the diversity of behavior observed with a cohesionless granular ma-
terial. This difficulty originates from fundamental characteristics of granular matter
such as negligible thermal fluctuations, highly dissipative interactions, and a lack of
separation between the microscopic grain scale and the macroscopic scale of the flow
(Goldhirsch 2003). As a result, granular flows are often classified into three different
regimes ( Jaeger et al. 1996): a dense quasi-static regime in which the deformations
are very slow and the particles interact by frictional contacts (Roux & Combes 2002);
a gaseous regime in which the flow is very rapid and dilute, and the particles interact
by collision (Goldhirsch 2003); and an intermediate liquid regime in which the ma-
terial is dense but still flows like a liquid, the particles interacting both by collision
and friction (GDR MiDi 2004, Pouliquen & Chevoir 2002).

In this article, we focus on this last liquid regime, which is most often encoun-
tered in applications, and discuss the possibility of a hydrodynamic description of
dense granular flows. We restrict the review to rigid dry grains and do not consider
soft particles, cohesive effects, or interaction with a surrounding fluid. In Section 2, we
explore the different flow regimes and discuss the granular solid-liquid and liquid-gas
transition. In Section 3, we focus on the rheological properties of the granular liquid.
We show that dimensional arguments suggest a simple frictional rheology, providing
a hydrodynamic framework that gives quantitative predictions in some simple config-
urations. However, serious limitations to this view exist, which are discussed in light
of recently developed alternative theoretical approaches. In Section 4, we present
depth-averaged approaches for granular flows, which represent an alternative strat-
egy to circumvent the lack of constitutive equations capable of capturing the whole
phenomenology of granular flows.

2. DIFFERENT FLOW REGIMES

Figure 1 shows a typical granular flow obtained when pouring beads on a pile. One
clearly observes three different regions corresponding to the three different flow
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Gas

Liquid

Solid

Figure 1
An illustration of the solid,
liquid, and gas flow regimes
obtained by pouring steel
beads on a pile.

regimes: a solid region under the pile in which grains do not move or creep very
slowly, a liquid region in which a dense layer flows, and a gaseous region in which the
beads bounce in all directions creating a dilute chaotic medium. In the following, we
discuss the boundaries between the different flow regimes.

2.1. Transition Between Solid and Liquid Behaviors

Our daily experience tells us that a pile of sand has to be inclined above a critical
angle in order to flow. This is because the onset of the flow of granular materials
is given by a friction criterion: The ratio of shear stress to normal stress, which is
simply the tangent of the slope of the pile, has to reach a critical value called the
friction coefficient in order for the material to deform. The reason why the solid-
liquid transition for a granular material is a friction criterion is that, for rigid grains,
no internal stress scale exists. This contrasts with other complex fluids exhibiting flow
threshold such as Bingham fluids, in which an internal stress scale exists that is linked
to the breakage of a microscopic structure. From a microscopic point of view, the
strength of a granular material comes not only from the friction between grains, but
also from the entanglement of the particles: Packed frictionless particles still exhibit
a macroscopic friction coefficient.

Although a friction criterion is the zero-order description of the solid-liquid tran-
sition, the details are more complex. First, the initiation of the flow is sensitive to
the initial preparation of the sample and depends on both the initial volume frac-
tion and the history of previous deformations (Daerr & Douady 1999a). Modeling
the initial deformation and the coupling between strain, stress, volume fraction, and
possibly other texture fields, such as contact orientation, is the domain of soils me-
chanics (Roux & Radjai 1998, Schofield & Wroth 1968, Wood 1990). Researchers
have proposed plastic constitutive laws, and attempts to connect the microstructure to
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Figure 2
Hysteresis and flow threshold in different systems. (a) Cylindrical Couette cell, with the
friction coefficient at the inner wall plotted as a function of the dimensionless mean shear rate.
Open circles represent increasing shear stress, and filled circles represent decreasing shear
stress (da Cruz et al. 2002). (b) Rotating drum with θstart (open circles) and θstop ( filled circles)
plotted as functions of the width of the drum (Courrech du Pont et al. 2003). (c) Inclined plane
with θstart (open circles) and θstop ( filled circles) plotted as functions of the layer thickness h
(Pouliquen & Forterre 2002).

the macroscopic behavior motivate many studies (Roux & Combes 2002). However,
such approaches focus on the initiation of the deformation and do not predict what
happens when continuous quasi-static flow is imposed on the material (Fenistein et al.
2004, Losert et al. 2000, Mueth et al. 2000, Veje et al. 1999).

A second shortcoming of the ideal friction criterion is that it cannot describe the
hysteresis observed in a stress-driven system. In a Couette cell, for example, one has
to increase the applied shear stress up to a critical value to induce flow, but once it
flows, the material stops only if the shear stress is decreased below a value less than
the starting value (Figure 2a). For free surface flows, as in a partially filled drum or
on a pile, one has to incline the free surface above a critical angle θstart to trigger an
avalanche, but the flow will stop only below a lower critical angle θstop. The origin of
hysteresis in granular media is well illustrated by the toy model of a single bead flowing
down a rough inclined substrate (Quartier et al. 2000). This analysis clearly shows
how hysteresis comes from the balance between kinetic energy, energy dissipation
due to collision, and the potential trap made by the roughness of the substrate.

The last weakness of the simple friction criterion is that the flow threshold depends
on the system size. In a rotating drum or on a pile, the width of the device plays an
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important role, and the two critical angles θstart and θstop increase when the distance
between sidewalls is small (Figure 2b). For the case of a granular layer of thickness
h on a rough inclined plane (Figure 2c), investigators found that the critical angles
controlling the start and stop depend on h. Both θstart(h) and θstop(h) increase when
the thickness is decreased (Daerr & Douday 1999b, Pouliquen & Forterre 2002,
Pouliquen & Renaut 1996). This is the signature of nontrivial finite-size effects and/or
boundary effects that are not well understood.

2.2. Transition Between Liquid and Gas Behaviors

At the other extreme, when the granular media is strongly agitated and flows very
rapidly, the medium looks like a gas with particles interacting mainly by binary col-
lisions. In this rapid and dilute regime, the analogy with a gas has been fruitful, and
much effort has been devoted to the development of a kinetic theory of granular
gases (Campbell 1990, Goldhirsch 2003). The difference with classical gases is that
kinetic energy is lost during collisions, which is characterized by the restitution co-
efficient e measuring the ratio between velocities after and before a collision. This
approach provides a set of constitutive equations connecting the mean density, the
mean velocity, and the so-called granular temperature, which measures the veloc-
ity fluctuations ( Jenkins & Richman 1985, Jenkins & Savage 1983). This theory has
proven to successfully describe the dilute regime (Forterre & Pouliquen 2002, Mitarai
& Nakanishi 2004, Swinney & Rericha 2004). However, contrary to optimistic expec-
tations, its range of validity appears to be narrow. When the flow becomes denser, the
energy dissipation due to inelasticity becomes so efficient that the basic assumptions
of binary collisions and molecular chaos break down: One quickly enters the dense
liquid regime.

Researchers have investigated the transition between the liquid and kinetic regimes
only in two dimensions by means of the numerical simulation of disks in plane shear
(da Cruz et al. 2004, Lois et al. 2006). An important result is that the transition depends
on the restitution coefficient e. Different criteria have been proposed to discriminate
between liquid and gas regimes based on either the mean duration of contact (da Cruz
et al. 2004) or the correlation length of the force network (Lois et al. 2005, 2006),
which increases in the liquid regime. Both criterion give qualitatively the same phase
diagram in the � – e plane, where � is the volume fraction defined as the ratio of the
volume occupied by the grains to the total volume (Figure 3). In this diagram, there
exists a critical volume fraction �c above which continuous flows are not possible and
particles have to deform to flow (Campbell 2002, Shen & Sankaran 2004). The range
of volume fraction in which the liquid regime is observed increases when the coeffi-
cient of restitution decreases. The phase diagram has been established for 2D disks,
but one expects a qualitatively similar plot in three dimensions, perhaps a delayed tran-
sition to the gaseous state, the dissipation being more efficient in three dimensions.

2.3. The Granular Liquid

In between the solid and gas regime, the granular material flows like a liquid, a
regime characterized by enduring contacts between particles and the existence of a
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Figure 3
Schematic phase diagram. � is the volume fraction, and e is the restitution coefficient.

force network. In this regime, the properties are almost insensitive to the coefficient
of restitution e (GDR MiDi 2004), although as discussed above, the transition to the
kinetic regime depends on e. To better understand this liquid regime, researchers have
investigated different flow configurations, the most common presented in Figure 4.
These configurations can be divided in two families: flows confined between walls
as in shear cells or silo and free surface flows such as flows down an inclined plane,
flows in a rotating drum, or flows on a pile. GDR MiDi (2004) discusses in detail
the characteristics of these configurations in terms of velocity profiles, density pro-
files, and velocity fluctuations. Recently, by analogy with classical hydrodynamics
problems, more complex flow configurations have been analyzed, such as dam-break
problems (Lajeunesse et al. 2004, Lube et al. 2004), coating-like problems (Deboeuf
et al. 2006, Felix & Thomas 2004), mixing experiments (Ottino & Khakhar 2000),
split Couette devices (Fenistein et al. 2004), drag problems (Hill et al. 2005), and
instabilities (Aranson & Tsimring 2006).

A recurrent and central question underlying all the studies involves the constitutive
equations of this peculiar liquid. Dense granular flows can be placed in the visco-
plastic family of materials because of two broad properties. First, a flow threshold
exists, although it is expressed in terms of friction instead of yield stress, as in a classical
visco-plastic material. Second, when the material is flowing, shear rate dependence is
observed, which gives it a viscous-like behavior. In the following section, we present
recent advances in our understanding of the rheology of dense granular flows.

3. RHEOLOGY OF DENSE GRANULAR FLOWS

3.1. Dimensional Analysis: Plane Shear

We first consider the simplest flow configuration consisting of spherical grains of
diameter d and density ρp sheared between two rough plates at a shear rate γ̇ in the
absence of gravity (Figure 4a). A shear stress τ then develops on the top plate. It is
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ca b

e f

g g

d

Figure 4
Different flow configurations: (a) plane shear, (b) Couette cell, (c) silo, (d ) flows down an
inclined plane, (e) flows on a pile, and ( f ) flows in a rotating drum.

important to notice that there are two ways of shearing the material. The first is to
impose the pressure P on the top plate. In this case the upper plate is free to move
vertically, and the volume fraction � typically decreases with increasing shear rate.
The second is to impose the volume fraction by fixing the distance between the plates.
In this case, the pressure on the top plate typically increases with shear rate. These
configurations give different results for the shear stress as a function of shear rate, but
both are fully equivalent, as shown by da Cruz et al. (2005). We begin our discussion
by considering the constant pressure case.

Friction and dilatancy laws. A crucial observation raised by da Cruz et al. (2005)
and Lois et al. (2005) is that, in the simple sheared configuration for infinitely rigid
particles, dimensional analysis strongly constrains the stress/shear rate relations. For
large systems (i.e., when the distance between the plates plays no role), the system is
controlled by a single dimensionless parameter called the inertial number:

I = γ̇ d√
P/ρp

. (1)

www.annualreviews.org • Flows of Dense Granular Media 7
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A possible interpretation of this parameter is given in terms of the ratio between
two time scales (GDR MiDi 2004): (a) a microscopic time scale d/

√
P/ρp , which

represents the time it takes for a particle to fall in a hole of size d under the pressure
P and which gives the typical time scale of rearrangements, and (b) a macroscopic
time scale 1/γ̇ linked to the mean deformation. Small values of I correspond to a
quasi-static regime in the sense that macroscopic deformation is slow compared to
microscopic rearrangement, whereas large values of I correspond to rapid flows. The
dimensional analysis tells us that, to switch from a quasi-static to inertial regime, one
can either increase the shear rate or decrease the pressure. This inertial number is also
equivalent to the square root of the Savage number or Coulomb number introduced
by some authors as the ratio of collisional stress to total stress (Ancey et al. 1999,
Savage 1984). Importantly, this parameter is the only dimensionless number for rigid
particles [this is not the case for soft particles, in which an elastic time scale comes into
play (Campbell 2002, Shen & Sankaran 2004)]. As a consequence, for rigid grains,
the shear stress is proportional to the pressure, with the effective friction coefficient
and the volume fraction being functions of I:

τ = Pμ(I ) and � = �(I ). (2)

Figure 5a,b shows the functions μ(I ) and �(I ) measured in the discrete numer-
ical simulations of da Cruz et al. (2005) carried out in two dimensions with discs
(filled circles). The friction coefficient is nonzero for I = 0, increases with I, ap-
pears to saturate at higher inertial numbers, and eventually decreases when reaching
the kinetic gas regime. The interparticle friction coefficient μp has little effect on
the macroscopic friction, except when μp = 0. The volume fraction �(I ) decreases
linearly over the range of inertial numbers investigated.

Pressure-controlled versus volume-controlled shearing. Carrying out shear
experiments at controlled pressure is not common in rheology and needs some
discussion. One can conduct the same kind of plane-shear computation at constant
volume fraction �. In this case, the fact that no internal stress scale exists implies that

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Figure 5
Friction coefficient and volume fraction as a function of the inertial number. (a, b) Data
obtained on 2D flows. Filled circles represent plane-shear simulations at constant pressure (da
Cruz et al. 2005); e = 0.5, and μp = 0.4. Open circles represent rotating drum simulations in
which the local friction coefficient and the local I parameter are obtained from velocity
profiles at different rotation rates (Renouf et al. 2005). (Inset in panel a) Plane-shear simulation
at constant volume fraction (G. Lois, A. Lemaitre & J.M. Carlson, submitted); μp = 0, and
e = 0.9, 0.75, 0.5, 0.25, 0.1, 0. (c, d ) Data obtained on 3D flows. Open circles represent
inclined-plane experiments, where μ(I ) is derived from measurements of depth-averaged
velocities at different inclinations and thicknesses (GDR MiDi 2004, Pouliquen 1999a); filled
circles represent inclined-plane simulations (Baran et al. 2006); and crosses represent
plane-shear experiments (material II, sample A), in which normal stress and volume fraction
measurements were obtained in 3D annular shear cells (Savage & Sayed 1984). (e, f )
Continuous line is fit given by Equations 4, and dashed line is the prediction of kinetic theory
for frictionless spheres; e = 0.6 (Lun et al. 1984).
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the shear stress and normal stress are given by what is called the Bagnold scaling:

τ = ρp d 2 f1(�)γ̇ 2 and P = ρp d 2 f2(�)γ̇ 2. (3)

This expression is not restricted to the collisional arguments initially given by Bagnold
(1954), but simply comes from dimensional analysis and is valid for all shear rates (Lois
et al. 2005). As a consequence, in a constant volume experiment, no threshold appears
to exist, and τ goes to zero when γ̇ goes to zero, although the ratio τ/P remains finite.
It is important to notice that this description is identical to Expression 2 given for
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pressure-controlled experiments. The following relations exist between μ(I ) and �(I )
and the functions f1 and f2: �(I ) = f −1

2 (1/I 2) and μ(I ) = I 2 f1( f −1
2 (1/I 2)). The inset

of Figure 5a shows data from the constant volume fraction simulations of G. Lois, A.
Lemaitre & J.M. Carlson (submitted) plotted in terms of μ(I ). The different curves
correspond to different restitution coefficients e. A master curve μ(I ) emerges, which
corresponds to e < 0.5. For higher e, the friction law deviates from the master curve
above a critical value of the inertial number I, which could be the signature of the
transition to the kinetic regime.

Although the descriptions in Equations 2 and 3 are equivalent, we find the first
more relevant for fluid mechanical treatments as emphasized by da Cruz et al. (2005).
Indeed, the functions f1 and f2 diverge very rapidly close to the maximum volume
fraction, which makes them difficult to measure accurately, whereas using the friction
and dilatancy laws eliminates this difficulty. Moreover, in the dense flow regime, in
which variations of the volume fraction are small, an incompressible assumption
is possible within the framework of Equations 2: The dilatancy and friction laws
are decoupled, which allows one to neglect the variations of � without losing the
variations of the friction coefficient, which characterize the viscous nature of the
material ( Jop et al. 2006).

3.2. A Local Rheology

It is tempting to consider the friction and dilatancy laws obtained in plane shear as
constitutive equations for dense granular flows. This appealing idea is not a priori
justified, as nothing stipulates that stresses developing in inhomogeneous systems will
be the same as in plane shear. This is true only for a local rheology, in which the shear
stress depends only on the local shear rate and pressure.

Support for the local assumption is given in Figure 5, which presents collected
data from other configurations and plots them in terms of friction and dilatancy laws.
Figure 5a,b shows 2D measurements obtained both in plane-shear (da Cruz et al.
2005) and rotating-drum simulations (Renouf et al. 2005), whereas Figure 5c,d shows
3D data from simulations (Baran et al. 2006) and experiments (Pouliquen 1999a) of
flows down inclined planes and from experiments in an annular shear cell (Savage
& Sayed 1984). A striking collapse is observed, showing that the inertial number I
remains the relevant parameter and that the friction law μ(I ) is the same in different
configurations. This result suggests that dense granular flows may indeed be described
in terms of local friction and dilatancy laws.

As a result, Equations 2 are good candidates for constitutive laws. The functions
μ(I ) and �(I ) can be fitted as follows ( Jop et al. 2005, Pouliquen et al. 2006):

μ(I ) = μ1 + μ2 − μ1

I0/I + 1
and � = �max + (�min − �max)I. (4)

Typical values of the constants obtained for monodispersed glass beads in three di-
mensions are μ1 = tan 21◦, μ2 = tan 33◦, I0 = 0.3, �max = 0.6, and �min = 0.4.
Those functional forms have not been tested for large values of the inertial number
I. However, the choice of a friction law that saturates to a finite value μ2 when I

10 Forterre · Pouliquen

A
nn

u.
 R

ev
. F

lu
id

 M
ec

h.
 2

00
8.

40
:1

-2
4.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
by

 A
ca

de
m

ia
 S

in
ic

a 
- 

N
an

ki
ng

, T
ai

pe
i o

n 
09

/1
1/

14
. F

or
 p

er
so

na
l u

se
 o

nl
y.



ANRV332-FL40-01 ARI 10 November 2007 15:46

goes to infinity is supported by experiments of steady granular fronts flowing down a
slope (Pouliquen 1999b): At the tip of a front, the shear rate goes to infinity, whereas
experiments reveal that the slope, and hence the friction coefficient, remains finite.
This is consistent with the saturation of μ(I ) to μ2.

3.3. Application to Different Configurations

In this section, we review different flow configurations and check the extent to
which the experimental observations can be captured by the simple description in
Equations 2.

Inclined plane. Researchers have investigated flows of grains on rough surfaces
(Figure 4d ) both in experiments and in numerical simulations using discrete element
methods (GDR MiDi 2004, and references therein). The principal observations for
steady uniform flows down rough inclined planes are the following: (a) The volume
fraction is constant across the layer; (b) for thick layers, the velocity follows the so-
called Bagnold profile and varies with the depth to the power 3/2; (c) for thin layers,
when h is close to the minimum thickness for flow, the velocity profile is close to linear
(Rajchenbach 2003, Silbert et al. 2003); and (d ) there is evidence of an empirical flow
rule, where the depth-averaged velocity 〈u〉 is related to the thickness of the layer
and to the inclination by an empirical relation 〈u〉/√gh α h/hstop (θ ), where hstop (θ ) is
the minimum thickness for flow (Deboeuf et al. 2006, Pouliquen 1999a, Silbert et al.
2003).

Many of these observations are captured by the local rheology. For inclined planes,
a force balance implies that the friction coefficient is constant across the layer and
equal to tan θ . Equations 2 thus predict that the parameter I and the volume fraction
� are constant across the layer. Moreover, the definition of I (Equation 1) implies for
a constant I that the shear rate varies like the square root of the pressure, implying a
Bagnold velocity profile and a mean velocity varying as the thickness to the power 3/2.

However, a few observations are not predicted by the local rheology. First, the
friction law does not recover linear profiles for thin layers. Second, close to the
free surface or the bottom, simulations show that I is not constant, contradicting
the prediction (Baran et al. 2006). Finally, the transition between solid and liquid
behavior is not correctly captured. In Section 2.1 we discuss that the minimum angle
θstop above which a flow is possible depends on the thickness h. The local rheology
predicts a simpler behavior, with a critical angle independent of the thickness and
equal to tan−1 μ1. However, assuming the local rheology (Equations 2), one can
easily show that the function μ(I ) is related to the function θstop(h) (GDR MiDi
2004). Whether this correlation between the shape of the flow threshold and the
friction law is just a coincidence or results from more fundamental physical reasons
remains an open question.

Flows on a pile. Flows on a pile are obtained when grains are poured on top of a static
packing (Figure 4e). In this configuration, steady uniform flows can be obtained for
long enough piles. Contrary to the inclined plane, the slope of the pile is not chosen by
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the experimentalist, but self-adjusts (Taberlet et al. 2003). The only control parameter
is then the injection flow rate. In this configuration, a localized free surface flow
develops with a velocity profile approximately linear in the upper region, followed
by an exponential creeping tail below (Komatsu et al. 2001). Jop et al. (2005) have
shown recently that the localization of the flow on the free surface in this geometry
is entirely controlled by the lateral wall, which introduces additional friction. The
thickness of the flowing layer then scales with the distance between the lateral walls
( Jop et al. 2005).

The local rheology leads to quantitative predictions for this configuration as well.
First, the scaling with I in the rheology implies a nontrivial scaling for how the incli-
nation, free surface velocity, and flow thickness depend on the flow rate and channel
width. Second, quantitative predictions are made without any fitting parameter once
the friction law is determined independently in inclined-plane experiments ( Jop et al.
2005).

However, some observations cannot be explained within the local rheology. First,
the creeping exponential tail observed at the boundary between the liquid layer and
the solid pile is not captured. Second, the flow threshold is not correctly described.
Experimentally, a critical flow rate exists below which continuous flow is not observed:
The flow is intermittent, consisting of successive transient avalanches ( Jop et al. 2005,
Lemieux & Durian 2000). The local rheology predicts a continuous steady flow even
for very low flow rates. The last disagreement concerns high flow rates, at which a
dilute region develops on top of the dense flow and high inclinations up to 60◦ have
been observed (Louge et al. 2005, Taberlet et al. 2003). In contrast, the model predicts
that the slope in a steady uniform regime is always below tan−1 μ2 ( Jop et al. 2005).

Rotating drums. Rotating drums (Figure 4f ) have been the subject of many exper-
imental studies and a few numerical ones (GDR MiDi 2004, and references therein).
This configuration has similarities with flow on piles, as a localized free surface flow
is observed on top of a region experiencing a rigid rotation with the drum. However,
the data are more difficult to interpret, as the flow is nonuniform (Renouf et al. 2005).
The flowing layer exhibits a lens shape, resulting from the exchange of grains along
the solid-liquid interface. Moreover, experiments are often carried out in thin drums,
for which sidewall friction cannot be neglected. Despite these intrinsic difficulties,
two recent attempts have been made to check the applicability of local rheology. Re-
nouf et al. (2005) have shown in 2D simulations that the friction law μ(I ) is locally
satisfied along the profile (Figure 5a). Orpe & Khakhar (2007) have shown in ex-
periments that the variation of the coefficient of friction is also embedded in the I
parameter. However, owing to the nonuniformity of the flow, a tensorial generaliza-
tion of Equation 2 should be used to test the local rheology in this configuration. We
discuss this point further in Section 3.4.

Confined flows. Researchers have studied other confined geometries in addition
to plane shear, including the cylindrical Couette cell (Figure 4b), the vertical silo
(Figure 4c), and plane shear with gravity (GDR MiDi 2004, and references therein).
In all these geometries, the velocity profile is localized in a shear band five to ten
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particles thick located close to the moving wall. In more complex 3D geometries such
as the modified Couette cell, in which the bottom is split into a rotating and a static
part, shear zones with up to 40-particle diameters are observed (Fenistein et al. 2004).

When applying the local rheology to these systems, one predicts the formation of
shear bands, resulting from the nonuniformity of the stress distribution (Pouliquen
et al. 2006). However, the thickness of the predicted shear bands depends on the
shear velocity and vanishes in the quasi-static limit. This contradicts observations
and clearly shows that the local rheology cannot capture the quasi-static regime.

3.4. Tensorial Formulation

The relative success of the local rheology in quantitatively predicting some simple
sheared configurations motivates us to analyze more complex configurations such as
the dam-break problem, spreading of masses, and free surface instabilities. In these
cases, the flows are characterized by shears in different directions. The comparison
with the local rheology thus requires the generalization of the simple scalar laws
(Equations 2) to a tensorial formulation. Following the work of several previous
authors (Depken et al. 2006, Goddard 1986, Savage 1983, Schaeffer 1987), one can
assume a colinearity between the shear stress and the shear rate tensors. Moreover,
with the assumption that the volume fraction is constant in the limit of dense systems,
the constitutive law of the granular liquid takes the form of a visco-plastic law, in which
the stress tensor is given by ( Jop et al. 2006)

σi j = −Pδi j + τi j , (5)

where P is the isotropic pressure,

τi j = ηγ̇i j , with η = μ(I )P
|γ̇ | , (6)

where |γ̇ | is second invariant of the shear rate tensor: |γ̇ | =
√

1
2 γ̇i j γ̇i j .

The granular liquid is then described as a peculiar non-Newtonian incompressible
fluid, with a viscosity η depending both on the shear rate and the pressure, a signature
of the underlying frictional nature of the medium. When |γ̇ | goes to zero, the viscosity
diverges, and one recovers a flow threshold given by a frictional Drucker-Prager
criterion: |τ | > μ1 P . In this constitutive law, no normal stress difference exists,
consistent with simulations for plane shear (da Cruz et al. 2005) and flow down
inclined planes (Silbert et al. 2001). We have tested this tensorial rheology in two
configurations: (a) free surface flows between rough walls ( Jop et al. 2006), in which
shear in two directions is present, and (b) the long wave instability observed for
flows down an inclined plane (Forterre 2006). In both cases, striking quantitative
agreement was obtained between predictions and experimental measurements for
velocity profiles and dispersion relations. To further test the relevance and limits
of the local rheology, it would be interesting to study other configurations such
as avalanche triggering (Figure 6), the dam-break problem, or the rotating drum.
However, simulating such a visco-plastic law with its divergence of viscosity has
proven to be a rather tricky exercise (Frigaard & Nouar 2005).

www.annualreviews.org • Flows of Dense Granular Media 13

A
nn

u.
 R

ev
. F

lu
id

 M
ec

h.
 2

00
8.

40
:1

-2
4.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
by

 A
ca

de
m

ia
 S

in
ic

a 
- 

N
an

ki
ng

, T
ai

pe
i o

n 
09

/1
1/

14
. F

or
 p

er
so

na
l u

se
 o

nl
y.



ANRV332-FL40-01 ARI 10 November 2007 15:46

z x

y

0

2

4

6z
d

y/W

V/(gd)

8

10

12

1
0.5

0 0.2 0.4 0.6 0.8 1.0 1.2

1
2

Figure 6
Temporal evolution of the
3D velocity profile
predicted by Equations 5
and 6 for the start of
granular flow in a narrow
channel.

3.5. Limits of the Local Approach: Beyond Dimensional Analysis

The simple local rheology seems to provide a minimal framework to describe many
features of dense granular flows. However, the link with microscopic grains properties
is still lacking, and serious limitations exist. In this section we briefly discuss these
difficulties and present recent theoretical approaches that have been proposed to
overcome them.

Microscopic origin. So far, the presented approach is phenomenological, and apart
from dimensional analysis, the shape of the friction law is measured and not derived
from the microscopic properties of the grains. Investigators have made several at-
tempts to connect the rheology to the evolution of the distribution of contacts within
the granular assembly (Ancey et al. 1999, da Cruz et al. 2005, Lois et al. 2006). It
seems that the origin of the increase of friction with the inertial number is linked to
a modification of the anisotropy in the contact distribution. Interestingly, a similar
shape of the friction law is obtained when investigating the motion of a single grain
on a bumpy surface (B. Andreotti, submitted).

Quasi-static limits. The second important limitation of this visco-plastic approach
concerns quasi-static flows: Shear bands observed in confined systems are not cor-
rectly described. To capture the correct behavior in this shear rate–independent
regime, a first approach consists of modifying plasticity models. Mohan et al. (2002)
have developed a modified Cosserat approach, in which an additional degree of
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freedom is introduced through local rotation. Kamrin & Bazant (2007) have re-
cently proposed another model inspired by Mohr-Coulomb plasticity. It consists of
introducing a stochastic flow rule in a Coulomb material. The last class of models is
inspired by the plasticity of amorphous solids (Lemaitre 2002) and is based on the
definition of elementary plastic processes.

A second approach to describing quasi-static flows consists of explicitly writing
nonlocal equations. This is motivated by observations of large spatial correlations
close to the flow threshold, as seen in force networks (Lois et al. 2006, Radjai & Roux
2003) and velocity fluctuations (Baran et al. 2006, Bonamy et al. 2002, Pouliquen
2004). Trying to incorporate such nonlocal effects in constitutive laws is not an
easy task and is a problem encountered in many other physical systems exhibit-
ing a jamming transition, but several attempts have been made. Mills et al. (1999)
have proposed constitutive equations in which stresses explicitly result from integrals
over force chains. Pouliquen et al. (2001) have proposed a self-activated process, in
which shear deformations at a point induce fluctuations that may trigger shears at
some other position. All these models have achieved moderate success, but they do
not give a unified description of the transition between the quasi-static and liquid
regimes.

Flow threshold. The third important limitation of the visco-plastic approach con-
cerns the flow threshold. In the model, the flow threshold is given by a simple
Coulomb criterion, whereas hysteresis and finite size effects exist, as discussed in
Section 2.1. Capturing the hysteretic character of granular flows is the major moti-
vation of a model developed by Aranson & Tsimring (2002). The granular media is
described as the mixture of solid and liquid phases, whose relative fraction is controlled
by a Landau equation. Some attempts have been made to connect this approach to
microscopic measurements (Volfson et al. 2003). The model describes nontrivial be-
haviors observed when triggering avalanches on an inclined plane but fails to predict
the correct rheology (Aranson & Tsimring 2006).

Transition to the kinetic regime. The last limitation, which has been much less
explored, concerns the transition to the kinetic gaseous regime. Configurations such
as flow on a pile at very high flow rate clearly show a gaseous layer forming on top
of a liquid layer (Louge et al. 2005). This gaseous regime is not captured in the sim-
ple visco-plastic approach. Conversely, the original kinetic theory based on binary
collisions does not capture the correct behavior in the dense regime as shown in
Figure 5e, f. The predicted μ(I ) curve exhibits two branches, the bottom one corre-
sponding to dense flows. The friction coefficient decreases with I, in contradiction
with observation.

This discrepancy has motivated several attempts to modify the original kinetic the-
ory to account for enduring contacts. The first consists of writing the shear stress as
the sum of a frictional term and a collisional term ( Johnson & Jackson 1987, Josserand
et al. 2006, Louge 2003, Savage 1983). However, in our opinion, the introduction
of a rate-independent pressure term in the equation of state poses problems from a
dimensional point of view. A second class of approaches consists of modifying the
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transport coefficients of the kinetic theory. Bocquet et al. (2001) propose to change
the expression for the viscosity by analogy with hard-sphere glasses. Savage (1998)
proposes to modify both the viscosity and dissipation terms. Kumaran (2006) seeks
higher-order Burnett terms in the Boltzmann equation development to recover the
correct variation of the volume fraction with inclination for flows down inclined
planes. A last idea postulates the existence of a length scale larger than the parti-
cle diameter related to the formation of clusters. Ertas & Halsey (2002) and Wang
(2004) have developed a simple heuristic mixing length theory. Recently, Jenkins
(2006) introduced a correlation length in the dissipation term of the classical ki-
netic theory and can predict important features observed for flows down inclined
planes.

Considering the large spectrum of theoretical approaches, we can infer that no
consensus exists and that finding constitutive laws valid from the quasi-static to dilute
regimes remains a serious challenge. In configurations in which the flowing layer
is thin, another theoretical framework based on depth-averaged equations has been
proposed. The question of the constitutive laws is then made much simpler as it
reduces to an interfacial law between the granular layer and the bottom.

4. SHALLOW-WATER DESCRIPTION

Savage & Hutter (1989) introduced depth-averaged or Saint-Venant equations in the
context of granular flows. The initial motivation was to model natural hazards such
as landslides or debris flows (Heinrich et al. 2001, Naaim et al. 1997). Assuming that
the flow is incompressible and the spatial variation of the flow takes place on a scale
larger than the flow thickness, one obtains the Saint-Venant equations by integrating
the 3D mass and momentum conservation equations. For 2D flow down a slope
making an angle θ with the horizontal (see Figure 7), the depth-averaged equations

x

z

h(x,t)

θ

Gravity
Basal friction

Pressure

Pressure

g

Figure 7
Forces balance in the shallow-water description.
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reduce to
∂h
∂t

+ ∂h〈u〉
∂x

= 0, (7)

ρpφ

(
∂h〈u〉

∂t
+ α

∂h〈u〉2

∂x

)
=

(
tan θ − μb − K

∂h
∂x

)
ρpφgh cos θ, (8)

where h is the local flow thickness, 〈u〉 = Q/h is the depth-averaged velocity (Q being
the flow rate per unit of width), and φ is the volume fraction, assumed constant.

Equation 7 is the mass conservation, and Equation 8 is the momentum equation
in which the acceleration is balanced by three forces (Figure 7): the gravity parallel to
the plane, the tangential stress between the fixed bottom and the flowing layer (written
as a basal friction coefficient μb multiplied by the normal stress), and a pressure force
related to the thickness gradient. The coefficient α is related to the assumed velocity
profile across the layer and is of order 1. The coefficient K represents the ratio of
the normal horizontal stress (x direction) to the normal vertical stress (z direction)
and is close to 1 for steady uniform flows (Silbert et al. 2001). The main advantage of
the Saint-Venant equations is that the dynamics of the flowing layer can be predicted
without knowing in detail the internal structure of the flow. The complex 3D rheology
of the material is mainly embedded in the basal friction term μb . Taking a simple
constant Coulomb-like basal friction is sometimes sufficient to capture the main
flow characteristics and has been used to describe granular slumping (Balmforth &
Kerswell 2005, Lajeunesse et al. 2005, Mangeney-Castelnau et al. 2005), rapid flows
down smooth inclines (Greve et al. 1994, Wieland et al. 1999), and shock waves (Gray
et al. 2003, Hokanardottir & Hogg 2005). However, for flows down rough inclines,
the assumption of a constant solid friction is not compatible with the observation
of steady uniform flows over a range of inclination angles. We have proposed more
complex basal friction laws μb (〈u〉, h) that lead to quantitative predictions in complex
situations such as a propagating steady front, mass spreading, or surface instabilities
(Forterre & Pouliquen 2003, Mangeney-Castelnau et al. 2007, Pouliquen 1999a,
Pouliquen & Forterre 2002). It should be noted that the Saint-Venant equations
(Equations 7 and 8) represent a first-order development in terms of the flow aspect
ratio. Therefore, they do not capture second-order effects such as longitudinal and
lateral momentum diffusion, which stabilize instabilities (Forterre 2006) and control
lateral stresses. The knowledge of the full 3D constitutive equations (Equations 4 and
5) may allow the development of more complex depth-averaged models (Balmforth
& Liu 2004, Ruyer-Quil & Manneville 2000).

Another application of the depth-averaged equations concerns situations in which
the flowing layer propagates on an erodible layer, such as flow on top of a static pile. In
this case, exchange of matter exists between the liquid and solid phase. An additional
equation is then needed to determine the solid-liquid interface. Several closures have
been proposed (Aradian et al. 2002). The first model (Bouchaud et al. 1994, Boutreux
et al. 1998) assumes that erosion/deposition is controlled by the difference between
the local slope and the critical pile angle. Other approaches assume a relation between
the average velocity and the flow thickness, either by fixing the velocity gradient
(Douady et al. 1999) or by prescribing a basal shear stress at the solid/liquid boundary
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(Khakhar et al. 2001). These models predict qualitatively nontrivial behaviors such as
avalanche front propagation (Douady et al. 2001, Taberlet et al. 2004). Although these
two-layer approaches seem to be a promising framework to study avalanching flows
on erodible beds, the closures proposed to date are not compatible with observations
of steady uniform flow on pile, in which the flowing thickness is selected by the
sidewalls ( Jop et al. 2005). This clearly shows that a proper development of shallow-
water models has to rely on the knowledge of the full constitutive equations, a goal
not completely achieved.

5. CONCLUSION

In this review, we present a brief survey of our current understanding of dense gran-
ular flows. Our main intention was to emphasize that a zero-order description of the
viscous-like behavior of dense granular flows is now available, which relies on simple
but solid dimensional arguments. A frictional visco-plastic formulation has been de-
veloped that gives quantitative predictions for different flow configurations and can
serve as an initial tool to predict other configurations encountered in applications.
Although promising, this approach fails to capture the details of the quasi-static flows
and the transition to solid or gaseous regimes. It is difficult to anticipate that more
elaborate constitutive equations will be developed in the near future that can de-
scribe the whole phenomenology of granular flows. The diversity of the theoretical
approaches clearly shows that the task is difficult, the central question now being,
in our opinion, how to account for the nonlocal effects created by the network of
enduring contacts.

The description of more complex materials than the simple dry monodispersed
spheres discussed above represents important challenges. Irregular-shaped particles,
cohesion, interaction with interstitial fluids, and polydispersity are often encountered
in most of the real granular materials used in industries or occurring in geophysics.
Few studies tackle these questions in light of the recent rheology found for simple dry
cohesionless materials. The role of the grain shape has been considered in few studies
(Börzsönyi et al. 2005, GDR MiDi 2004). It seems that nonlocal effects are enhanced
owing to the irregular shape, leading to a narrower range of validity of the local rheol-
ogy. Investigators have also recently studied the role of cohesion based on dimensional
arguments and have proposed a friction law that depends on both the inertial number
and a second dimensionless number measuring the relative strength of cohesion to
confining pressure (Rognon et al. 2006). The role of the interstitial fluid has been
also investigated in submarine granular avalanches. Interestingly, the same friction
law as that for the dry case seems to hold when the typical time scale of microscopic
rearrangements is changed to a viscous time scale (Cassar et al. 2005). This result
opens new perspectives at the boundary between granular media and dense suspen-
sions (Stickel & Powell 2005). Finally, the problem of polydispersity and segregation
has been intensively studied (Ottino & Khakhar 2000). Researchers have identified
important mechanisms (Felix & Thomas 2005, Savage & Lun 1988) and developed
models to address specific configurations. There is no doubt that ongoing progress
in the rheology of granular flows will help in describing polydispersed systems.

18 Forterre · Pouliquen

A
nn

u.
 R

ev
. F

lu
id

 M
ec

h.
 2

00
8.

40
:1

-2
4.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
by

 A
ca

de
m

ia
 S

in
ic

a 
- 

N
an

ki
ng

, T
ai

pe
i o

n 
09

/1
1/

14
. F

or
 p

er
so

na
l u

se
 o

nl
y.



ANRV332-FL40-01 ARI 10 November 2007 15:46

DISCLOSURE STATEMENT

The authors are not aware of any biases that might be perceived as affecting the
objectivity of this review.

ACKNOWLEDGMENTS

We thank F. Chevoir, A. Lemaitre, D. Bonamy, and M. Renouf for their data and G.M.
Homsy for a careful and critical reading of the manuscript. We also acknowledge the
support of ANR (Agence Nationale pour la Recherche) and IFCPAR (Indo-French
Center for the Promotion of Advanced Research).

LITERATURE CITED

Ancey C, Coussot P, Evesque P. 1999. A theoretical framework for granular suspen-
sion in a steady simple shear flow. J. Rheol. 43:1673–99
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